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In a realistic three-dimensional setup, we simulate the slow deformation of idealized granular media com-
posed of spheres undergoing an axisymmetric triaxial shear test. We follow the self-organization of the spon-
taneous strain localization process leading to a shear band and demonstrate the existence of a critical packing
density inside this failure zone. The asymptotic criticality arising from the dynamic equilibrium of dilation and
compaction is found to be restricted to the shear band, while the density outside of it keeps the memory of the
initial packing. The critical density of the shear band depends on friction �and grain geometry� and in the limit
of infinite friction it defines a specific packing state, namely the dynamic random loose packing.
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I. INTRODUCTION

Packing density of different particulate systems is of main
interest for scientific fields including, but not limited to, sus-
pensions, metallic glasses, molecular systems, and granular
materials. In three dimensions, for identical spheres, the
face-centered cubic �fcc� packing is the maximum possible
�1�. This fills the space with a volume fraction of � / �3�2�
�0.74. Random arrangements have much lower densities
�2�. Different experiments and computer simulations re-
vealed that the largest obtainable volume fraction of a ran-
dom packing of identical spheres is around 0.64. This is
known as the random close packing �RCP� limit. A math-
ematical definition of this limit can be given through the
concept of maximally random jammed state �3,4�.

Reaching the RCP limit needs careful preparation �e.g.,
tapping and compression�. If glass or marble beads are sim-
ply poured into a container the volume fraction is usually
only around 0.6. A random loose packing �RLP� at its limit
of mechanical stability obtained by immersing spheres in a
fluid and letting them settle has a volume fraction of 0.555
�5�. The volume fraction of RLPs obtained with different
methods �both experimental and numerical� show that this
packing state is less well-defined than the RCP limit. At-
tempts made in order to relate RLP to rigidity percolation �5�
and to critical density at jamming of an assembly of �infi-
nitely� rough spheres �6� are to be mentioned.

Already in 1885, Reynolds noted that dense granular
samples dilate during slow deformation �7�. On the other
hand, it is well known that loose granular materials densify
in such a process �8,9�. Under slow shear the strain is usually
localized to narrow domains called shear bands. As it was
first suggested by Casagrande �10�, it is tempting to assume
that in these failure zones the system self-organizes its pack-
ing density to a critical value independent of the initial pack-
ing state of the material.

While this hypothesis forms the basis of many continuum
constitutive models of soil mechanics since decades �11�, a
general micromechanical theory of shear band formation and
of the involved criticality is still missing. Progress, needed in
order to deepen our understanding of the critical state in

shear bands, can be expected from the remarkable develop-
ment of experimental techniques �including computer to-
mography �12,13� and measurements in microgravity
�14,15�� and of simulation techniques which become increas-
ingly efficient as computational power grows �16�.

Shearing of granular materials has been investigated in
many different geometries and specially designed laboratory
tests �for recent results see �12,14��. Such experimental stud-
ies revealed complex localization patterns and presented evi-
dence for the existence of a critical particle density inside the
shear bands. The importance of computer simulations is en-
hanced by the fact that they make possible studies which are
difficult to control in experiments �e.g., friction dependence�
and they facilitate the measurement of hardly accessible
quantities �e.g., volume fraction inside the shear bands�.

The critical density, in numerical studies, is often studied
only in special conditions when shearing extends to the
whole volume of the samples. This allowed for discussing
the criticality based simply on global behavior �e.g., dila-
tancy�. Without reference to shear bands, many qualitative
effects were already pointed out in both mathematical mod-
els �17,18� and simulations �18,19�. However, such studies
neglected the involved localization phenomena inevitable in
real situations and disregarded the self-organizing manner in
which the packing state of the shear bands is usually formed.

A principal parameter which controls the dynamic equi-
librium between dilation and compaction in fully developed
shear bands is the friction between the grains. Intuitively, a
system of frictionless grains can be sheared at a large pack-
ing density �close to the RCP limit� because the grains �under
slow shear� can easily rearrange in compact configurations.
At large friction the rearrangement of the grains is hindered
by friction, consequently the packing density of the shear
bands is expected to define a low density state close to the
RLP limit.

The aim of this paper is to study the emergence of a
critical packing state in sheared granular media and to
present its relation to shear bands as well as its dependence
on friction.
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II. SIMULATIONS

We investigate numerically an axisymmetric triaxial shear
test �see Fig. 1�. This consists of the slow compression of a
cylindrical sample enclosed between two end platens. The
sample is surrounded by an elastic membrane on which an
external confining pressure is applied. The end platens are
pressed against each other in a strain controlled way. The
upper platen is allowed to tilt. In certain conditions a planar
shear band is formed �12�. Using different initial packing
densities and friction properties of the grains as well as iden-
tifying the grains in the failure zones makes it possible to
study the critical packing density inside the shear bands.

The simulations, which are going to be presented here, are
based on a standard three-dimensional distinct element
method �DEM��21�. We implemented the Hertz contact
model �22� with appropriate damping combined with a fric-
tional spring-dashpot model �16�. The normal Fn and the
tangential Ft forces are calculated as

Fn = �n�n
3/2 − �n�n

1/2vn, �1�

Ft = �t�t − �tvt, �2�

where �n=106 N/m3/2, �t=104 N/m, �n=1 N s/m3/2, and
�t=1 N s/m are normal and tangential stiffness and damping
coefficients, �n and �t are normal and tangential displace-
ments, and vn and vt are the normal and tangential relative
velocities.

The numerical values are chosen to realize the hardest
material that we could safely simulate with the minimal
damping preserving the numerical stability of the calcula-
tions. With the above stiffness and damping coefficients, the
inverse of the average eigenfrequency of contacts, in both
normal and tangential direction, is more than one order of
magnitude larger than the used integration time step �t
=10−6 s. This assured that the noise level induced by numeri-
cal errors is kept low.

With relatively small samples �made up of 27 000 par-
ticles� but in a realistic geometry we have succeeded to re-
produce shear band morphologies �20,23� known from ex-
periments �12,14�. In order to study the criticality of these
shear bands, we prepared homogeneous initial configurations

of different volume fractions using the deposition method
described in �20�.

We used a particle distribution similar to those encoun-
tered in experimental studies of idealized granular materials.
Our particles are spherical, they have equal mass density
�2.5�103 kg/m3�, equal friction coefficient, and their diam-
eters are set according to a narrow Gaussian distribution with
mean d=0.9 mm and standard deviation of 2.77%. The pre-
pared cylindrical samples, having diameter D=23.3d, con-
sisted of 20 000–27 000 spherical grains as required by a
prescribed packing density and the H�2.2D geometrical
constraint, where H is the height of the samples.

Initially the particles were placed randomly in a tall cyl-
inder �about three times taller than H�. They were given
small downwards velocities in such a way that they all col-
lided approximately at the same time. The upper platen was
pressed on top of the packing to hold it together. This method
provides an efficient way to produce a homogeneous random
packing. The volume fraction of the prepared samples could
be controlled in the full RLP to RCP range �see Table I� by
varying the coefficient of friction �0 which was applied dur-
ing this phase.

After preparation, the friction coefficient of the particles
was set to a new value � independent of �0. During the
simulations, similarly to �20�, we compressed the samples
vertically at zero gravity and 0.5 kPa confining pressure. The
bottom platen was fixed. The upper platen moved downward
with a constant velocity, inducing an axial strain rate of
20 mm/s. During compression the upper platen could freely
tilt along any horizontal axis with rotational inertia I
=10−7 kg m2.

The lateral membrane surrounding the sample was mod-
eled with approximately 15 000 identical, overlapping, non-
rotating, frictional spheres connected with elastic springs.
The stiffness of the springs was set to �s=0.5 N/m. This
prevented the particles from escaping by passing through the
membrane. The membrane particles were initially arranged
in a triangular lattice �Fig. 1�b��. The confining pressure was
applied on the triangular facets formed by the neighboring
“membrane nodes” as described in �20� �see also �24–26��.

It is worth mentioning that Cui and O’Sullivan �26� have
introduced a technique which speeds up calculations by com-
puting only a section of the cylindrical sample. This allows
for larger samples but requires that the symmetry of the sys-
tem is kept during compression, and thus eliminates the pos-
sibility of symmetry breaking strain localization, which
arises spontaneously �20� if tilting of the upper platen is not
suppressed �see Fig. 1�a��.

We have executed several simulation runs. The grain-
platen and grain-membrane contacts were calculated simi-
larly to grain-grain contacts including the friction properties.

TABLE I. Volume fraction �0 of samples prepared with differ-
ent coefficients of friction �0. With each �0 we prepared two
samples having the same �0 within 0.2% relative error.

�0 0.8 0.5 0.3 0.2 0.1 0.0

�0 0.555 0.562 0.578 0.599 0.621 0.641

FIG. 1. �Color online� �a� Grains placed between two horizontal
platens and surrounded by an elastic membrane were subjected to a
vertical load and a lateral confining pressure. �b� The membrane
was modeled with overlapping spheres �20�.
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The samples of different initial volume fractions �see Table I�
were first compressed using the same coefficient of friction
�=0.5. Later, we compressed the densest samples ��0

=0.641� with ten different friction coefficients �
� �0,0.1, . . . ,0.9�. For each set of parameters, two simula-
tion runs were executed using specimens prepared with dif-
ferent random seeds.

During compression, we measured locally the shear inten-
sity S and the volume fraction �. The regular triangulation of
the spherical grains �27,28� was used to define these quanti-
ties. The local volume fraction is given by the ratio of the
volumes of a grain and its regular Voronoi cell. The local
shear intensity is calculated from the macroscopic strain ten-
sor derived from particle displacements �20,29�. Using the
eigenvalues 	k of this tensor, we defined the local shear in-
tensity as

S = max
k
		k −

1

3

l

	l	 . �3�

To overcome fluctuations due to random packing and rear-
rangements, we calculated spatial averages up to third order
neighbors along the regular triangulation.

III. IDENTIFICATION OF HIGH SHEAR
INTENSITY REGIONS

Strain localization in dense and loose samples shows sub-
stantial differences �12�. In dense samples shear bands are
usually formed after a short plastic deformation and inside
them the local packing density is lower than in the bulk �i.e.,
the regions outside of the shear bands�. Since denser parts
are more stable, the position of the shear bands remains un-
changed for the whole duration of a shear test. Contrary, in
loose samples the shear bands have a slightly higher packing
density than the bulk and hence the position of the shear
bands is likely to change and to move around the whole
sample. This leads to more or less homogeneous samples
with local packing densities close to the packing density of
the shear bands.

The general algorithmic identification of failure zones
based on geometric methods is difficult, especially regarding
the identification of the nonpersistent shear bands of the
loose samples. Nevertheless, based on the calculated local
shear intensity, individual grains can be categorized to be
part of the failure zones or the bulk providing that a good
enough threshold separating these two classes can be found.
A histogram technique seems to be a perfect candidate for
this.

Figure 2 presents histograms of the local shear intensity
and local volume fraction. It shows the main aspects of the
strain localization process observed in one of our simulations
executed with a sample having �0=0.641 and �=0.5. At the
beginning of the test, up to approximately 6% axial strain, in
shear intensity histograms �see Figs. 2�a� and 2�c��, we find a
single peak at medium S. This means that almost all particles
rearrange simultaneously and consequently the sample expe-
riences a more or less plastic deformation. This is underlined
by the fact that the local volume fraction has just one strong

peak �Fig. 2�d��, indicating that the sample is still homoge-
neous.

At higher �
6% � axial strain a shear band is formed. This
is localized to a planar failure zone of width of approxi-
mately ten particle diameters and is characterized by much
higher S than the bulk. In the bulk the shear intensity fluc-
tuations are small, while these fluctuations are large in the
shear band. Consequently, in shear intensity histograms �Fig.
2�e��, we find a narrow peak at low S, corresponding to the
bulk, and a wide peak at high S, corresponding to the shear
band. The volume fraction histogram does also become more
structured showing evidence of a nonhomogeneous material.
The narrow peak at low volume fraction corresponds to the

FIG. 2. �Color online� Example of shear intensity and volume
fraction histogram maps ��0=0.641, �=0.5�. The shear intensity is
measured in arbitrary units. In �a� and �b� the occurrences �scaled to
�0,1�� are encoded with the color scale shown at the top. In �a� the
white curve marks the shear intensity threshold STH. In �b� it marks
the shear band volume fraction �SB. The dotted and dashed vertical
lines in �a� and �b� at 4.4% and 16% axial strain mark the position
of the histograms �c�, �d� and �e�, �f�, respectively.
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shear band while the bulk produces a much wider distribu-
tion at a higher volume fraction �Fig. 2�f��.

Motivated by this separation, we computed a shear inten-
sity threshold STH, which could be used to define two classes
of shear intensity values �low and high� and to classify the
grains accordingly into shear band and bulk. For this we used
Otsu’s threshold selection method �30� described in the Ap-
pendix. This histogram technique minimizes the within-class
variance and maximizes the separation of classes, and thus
gives an ideal solution to our problem. We have also tested
another threshold selection method modeling the histograms
with the sum of two Gaussian functions, however, numeri-
cally this proved to be less stable and less reliable.

The condition S
STH made it possible to identify the
grains in high shear intensity regions—where shear bands
emerge—and thus the average volume fraction �SB of these
regions could be calculated. The local packing density in
shear bands is found to have small fluctuations and to give a
peak in the volume fraction histograms. This coincides with
�SB �see Fig. 2�b� and 2�f��, giving a self-validation of the
method.

Let us note that even if Fig. 2�e� does not suggest a clean
separation of the grains into those within and those outside
the shear bands—i.e., there is no shear intensity gap between
the two regimes—this is not crucial for �SB. Adding an arti-
ficial random noise of 10% to STH does influence the result-
ing �SB only within 0.5%.

We also mention here that before strain localization takes
place the shear intensity histograms have only one peak �see
Fig. 2�c��. In this case, the threshold given by Otsu’s method,
which falls on the middle of the peak, is not physically rel-
evant. However, as the sample is homogeneous, the selected
samples in high shear intensity regions still give the volume
fraction which is close to the average volume fraction of the
whole sample. This can be verified in Fig. 2�d�.

IV. RESULTS

As expected �12,14�, we found that due to strain localiza-
tion at the end of the shear tests the global volume fraction of
the samples is not equal to the packing density of the high
shear intensity regions and thus global measurements cannot
be used to characterize the properties of failure zones. The
behavior of both dense and loose samples demonstrates that
in the shear bands, the initial packing conditions are canceled
and a critical volume fraction �c is reached in a self-
organizing manner independently of the initial density of the
tested granular specimens �Fig. 3�a��.

The criticality is found to be restricted to the shear bands.
The global volume fraction �g calculated from the total vol-
ume of the samples does not converge to �c �Fig. 3�b��. This
behavior is expected to be more pronounced on larger sys-
tems. The dense samples are characterized by �g
�c. This
demonstrates that the dilatancy �7� is concentrated to the
shear bands. Contrary, for loose samples �g��c, however,
the specimen is only slightly looser outside the shear bands.
This gives a direct proof of shear induced compaction �9�.

As we could see, at given friction, the critical packing of
shear bands is independent of the initial density. It is, how-

ever, a further question whether it depends on friction. We
studied quantitatively this effect for samples with initial den-
sity �0=0.641. At �=0 the high shear intensity regions have
a large volume fraction �c

0��c�0�=0.637±0.002, which is
only slightly smaller than �0, showing that frictionless
granular systems can be sheared at densities very close to the
RCP limit.

In frictional systems, the volume fraction of the fully de-
veloped shear bands is substantially lower than the initial
volume fraction �see Fig. 4�. With increasing �, this de-
creases and converges to a limit which we estimate to �c

�

� lim�→� �c���=0.578±0.003 based on the exponential ex-
trapolation of our data.

This limit volume fraction depends only on geometry fac-
tors such as shape and size distribution of the grains and is

FIG. 3. �Color online� Volume fraction measured in high shear
intensity regions �a� and globally �b� as a function of the axial
strain. The different lines correspond to different initial packing
densities �0 �see Table I� decreasing from top to bottom. The two
panels use the same notations.

FIG. 4. �Color online� Critical packing of shear bands as a func-
tion of friction measured at 20% axial strain. The fitted curve shows
�c���=�c

�− ��c
�−�c

0�exp�−� /�c
0�, where �c

0=0.637, �c
�=0.578,

and �c
0=0.23.
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characteristic to the dynamic equilibrium between dilation
and compaction developed in a self-organized manner
through strain localization. Based on the value of �c

� and this
latter aspect, the corresponding asymptotic state—which we
refer to as the dynamic random loose packing �DRLP�—
should be distinguished from the static RLP limit.

V. CONCLUSIONS AND DISCUSSION

We have presented distinct element simulations of axi-
symmetric triaxial shear tests at zero gravity and low confin-
ing pressure. Due to spontaneous strain localization, shear
bands were formed. Using a histogram technique, we identi-
fied the grains in high shear intensity regions, which at large
axial strains coincide with the shear bands. We measured the
packing density �SB inside these failure zones and we found
that in fully developed shear bands �SB approaches a critical
value �c independent of the initial density of the samples.
This is in agreement with Casagrande’s �10� observation
made for sandy soils seven decades before and also with
recent experiments �13,12,15,14� and numerical studies
�19,17,18�.

Rothenburg and Kruyt �18� obtained similar results in
two-dimensional simulations of biaxial shear tests. They
have presented a theory of the average coordination number
of sheared granular media and derived a law for its evolution
during slow deformations. Analyzing the relationship be-
tween volume fraction and average coordination number,
they conclude that a proper characterization of granular me-
dia undergoing shear deformation should be based on pack-
ing density.

We have shown that the criticality is restricted to the shear
bands and global measurements �such as dilatancy� are un-
suitable for the investigation of the properties of sheared
granular materials in realistic situations, where strain local-
ization is inevitable. The critical packing density of shear
bands was evidenced based on simulations of a realistic
three-dimensional setup and spontaneous strain localization
revealing the self-organizing manner in which the packing
state of the shear bands is developed.

We have further shown that �c depends on the coefficient
of friction � and in the limit �→� it converges to a value
�c

�, which we have calculated within the accuracy of our
simulations. The found �c

� defines a low density dynamic
random loose packing �DRLP� state, which is characteristic
to the dynamic equilibrium between dilation and compaction
in the shear bands and depends only on the geometry of the
grains. Based on the underlying mechanism, we argue that
the asymptotic packing state of shear bands differs from the
static RLP limit.

This result should be also compared with the findings pre-
sented recently by Zhang and Makse �6� regarding the criti-
cal density of granular materials at jamming transition. The
importance of these findings lies in the fact that jamming is a
basic concept which through a unifying phase diagram
�31,32� connects granular matters with a variety of other sys-
tems including dense particulate suspensions and effects
such as diverging viscosity at a maximum packing fraction
�33,34�.

In quasistatic limit, Zhang and Makse �6� reported a mo-
notonous decrease of the critical packing density as a func-
tion of friction. For low friction, the density of the shear
bands found in our simulations is lower than at jamming
found by Zhang and Makse �6�, while at high friction the
situation is reversed. This indicates a natural separation of
low and high density regions with possibly different mecha-
nisms of dissolving the jammed state.

As a final remark let us note that our results are derived
for idealized granular materials composed of spheres having
a narrow size distribution. It is well-known that for non-
spherical grains and wide size distributions the packing effi-
ciency increases �35�, which should be also reflected in the
packing density of the shear bands. This could be the reason
why experimental results on sand reveal smaller volume
fractions in shear bands �12,14� than the values found in our
simulations.

ACKNOWLEDGMENTS

This research was carried out within the framework of the
“Center for Applied Mathematics and Computational Phys-
ics” of the BME, and it was supported by OTKA F047259
and T049403, and the Péter Pázmány program RET-06/2005.
S.F. thanks D. Chetverikov for the introduction to Otsu’s
method.

APPENDIX: OTSU’S THRESHOLD SELECTION METHOD

Otsu’s method �30� is a histogram technique known from
digital image processing, where it is typically used to trans-
form grayscale images into two component �black and white�
images.

Let us consider a normalized histogram P�i�, i.e., a histo-
gram with the property



i

P�i� = 1, �A1�

where i is the bin index. The mean � and the variance 2 can
be calculated as

� = 

i

iP�i� , �A2�

2 = 

i

�i − ��2P�i� . �A3�

Let us further consider a candidate threshold t and split
the histogram in two parts I1�t�= �i � i� t� and I2�t�= �i � i
 t�.
With k� �1,2� and

qk�t� = 

i�Ik�t�

P�i� , �A4�

the mean �k�t� and variance k
2�t� of the two parts are de-

fined by the equations

qk�t��k�t� = 

i�Ik�t�

iP�i� , �A5�
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qk�t�k
2�t� = 


i�Ik�t�
�i − �k�t��2P�i� . �A6�

The within-class variance

W
2 �t� = q1�t�1

2�t� + q2�t�2
2�t� �A7�

is an inverse measure of the compactness of classes. The
between-class variance

B
2�t� = q1�t�q2�t���1�t� − �2�t��2 �A8�

is a measure of the separation of classes. It is easy to show
that W

2 �t�+B
2�t�=2. Otsu �30� proposed to calculate an op-

timal threshold t= topt by either minimizing W
2 �t� or maxi-

mizing B
2�t�.

Maximizing B
2�t� is easier. It can be seen that

q2�t� = 1 − q1�t� , �A9�

�2�t� =
� − q1�t��1�t�

q2�t�
, �A10�

and thus

B
2�t� =

q1�t�
1 − q1�t�

��1�t� − ��2. �A11�

For each candidate threshold t, q1�t� and �1�t� can be
calculated with the recursive formula

q1�t + 1� = q1�t� + P�t + 1� , �A12�

�1�t + 1� =
q1�t��1�t� + �t + 1�P�t + 1�

q1�t + 1�
, �A13�

where q1�0�= P�0� and �1�0�=0.
Both q1�t� and �1�t� are increasing monotonously with t,

consequently the maximum of B
2�t� is well-defined, except

for degenerated cases which must be handled separately. The
optimal threshold topt is given by the smallest candidate
threshold s which satisfies the equation

B
2�s� = max

t
B

2�t� . �A14�

Because W
2 �topt�+B

2�topt�=2, the method both minimizes
the within-class variance and maximizes the separation of
classes.

�1� D. A. Weitz, Science 303, 968 �2004�.
�2� T. Aste, M. Saadatfar, and T. J. Senden, Phys. Rev. E 71,

061302 �2005�.
�3� S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev.

Lett. 84, 2064 �2000�.
�4� C. S. O’Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, Phys.

Rev. E 68, 011306 �2003�.
�5� G. Y. Onoda and E. G. Liniger, Phys. Rev. Lett. 64, 2727

�1990�.
�6� H. P. Zhang and H. A. Makse, Phys. Rev. E 72, 011301

�2005�, and references therein.
�7� O. Reynolds, Philos. Mag. 20, 469 �1885�.
�8� J. Török, S. Krishnamurthy, J. Kertész, and S. Roux, Phys.

Rev. Lett. 84, 3851 �2000�.
�9� T. L. Youd, J. Soil Mech. and Found. Div. 98, 709 �1972�.

�10� A. Casagrande, J. Boston Soc. Civ. Eng. 23, 257 �1936�.
�11� A. N. Schofield and P. Wroth, Critical State Soil Mechanics

�McGraw-Hill, London, 1968�.
�12� J. Desrues, in X-ray CT for Geomaterials, edited by J. Otani

and Y. Obara �Balkema, Amsterdam, 2004�, pp. 15–41.
�13� J. Desrues, R. Chambon, M. Mokni, and F. Mazerolle, Geo-

technique 46, 529 �1996�.
�14� S. N. Batiste, K. A. Alshibli, S. Sture, and M. Lankton, Geo-

tech. Test. J. 27, 568 �2004�.
�15� K. A. Alshibli, S. Sture, N. C. Costes, M. L. Frank, M. R.

Lankton, S. N. Batiste, and R. A. Swanson, Geotech. Test. J.
23, 274 �2000�.

�16� T. Pöschel and T. Schwager, Computational Granular Dynam-
ics: Models and Algorithms �Springer, Berlin, 2005�, and ref-
erences therein.

�17� M. Piccioni, V. Loreto, and S. Roux, Phys. Rev. E 61, 2813
�2000�.

�18� L. Rothenburg and N. P. Kruyt, Int. J. Solids Struct. 41, 5763
�2004�.

�19� X. Zhuang, A. K. Didwania, and J. D. Goddard, J. Comput.
Phys. 121, 331 �1995�.

�20� S. Fazekas, J. Török, J. Kertész, and D. E. Wolf, Phys. Rev. E
74, 031303 �2006�.

�21� P. A. Cundall and O. D. L. Strack, Geotechnique 29, 47
�1979�, and articles citing this one.

�22� L. D. Landau and E. M. Lifshitz, Theory of Elasticity, 2nd ed.
�Pergamon, New York, 1970�, Chap. 9.

�23� S. Fazekas, J. Török, J. Kertész, and D. E. Wolf, in Powders
and Grains 2005, edited by R. García-Rojo, H. J. Herrmann,
and S. McNamara �Balkema, London, 2005�, pp. 223–226;
e-print cond-mat/0606720.

�24� H. Tsunekawa and K. Iwashita, in Powders and Grains 2001,
edited by Y. Kishino �Balkema, Rotterdam, 2001�, pp. 177–
180.

�25� H. Sakaguchi and H.-B. Mühlhaus, in Exploration Geodynam-
ics Chapman Conference �American Geophysical Union,
Dunsborough, Western Australia, 2001�, pp. 153–155.

�26� L. Cui and C. O’Sullivan, in Powders and Grains 2005, edited
by R. García-Rojo, H. J. Herrmann, and S. McNamara
�Balkema, London, 2005�, pp. 301–305.

�27� C. Lee, in Applied Geometry and Discrete Mathematics: The
Victor Klee Festschrift, edited by P. Gritzmann and B. Sturm-
fels �American Mathematical Society, Providence, RI, 1991�,
pp. 443–456.

�28� H. Edelsbrunner and N. R. Shah, Algorithmica 15, 223 �1996�,
and references therein.

�29� D. Daudon, J. Lanier, and M. Jean, in Powders and Grains
1997, edited by R. P. Behringer and J. T. Jenkins �Balkema,
London, 1997�, pp. 219–222.

FAZEKAS, TÖRÖK, AND KERTÉSZ PHYSICAL REVIEW E 75, 011302 �2007�

011302-6



�30� N. Otsu, IEEE Trans. Syst. Man Cybern. 9, 62 �1979�.
�31� V. Trappe, V. Prasad, L. Cipelletti, P. N. Segre, and D. A.

Weitz, Nature �London� 411, 773 �2001�.
�32� A. J. Liu and S. R. Nagel, Nature �London� 396, 21 �1998�.
�33� J. J. Stickel and R. L. Powell, Annu. Rev. Fluid Mech. 37, 129

�2005�.

�34� G. Ovarlez, F. Bertrand, and S. Rodts, J. Rheol. 50, 259
�2006�, and references therein.

�35� A. Donev, I. Cisse, D. Sachs, E. A. Variano, F. H. Stillinger, R.
Connelly, S. Torquato, and P. M. Chaikin, Science 303, 990
�2004�.

CRITICAL PACKING IN GRANULAR SHEAR BANDS PHYSICAL REVIEW E 75, 011302 �2007�

011302-7


